1dir.cloud - 1dir.org - 1dir.cc

1 decimal integer ring cycle of many

Quantum Field Fractal Polarization Math Constants

nemeth braille printable arx calc

pronounced why phi prime quotients

Y φ Θ P Q Ψ

condensed matter

Y Phi Theta Prime Q Quotients Base Numerals 1dir 2dir 3dir cdir

numer nu mer numerical nomenclature & arcs


Exponential arc path functions dependent of definition of cn and ratio value where applicable with fractals to being the multiple of the number from some complex and basic numerals.

Multiplication after division, what is an error in order of operations to PEMDAS with many of these variables.

Variables of A  B  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  φ  Θ  Ψ  ᐱ  ᗑ  ∘⧊°  ∘∇° are applicable to a function.

Function path ncn=(⅄nncn)(ncn) is nncn to a multiple of nncn such that nncn is a number or variable with a repeating or not repeating decimal stem cycle variant. =

Examples of ncn=(⅄nncn)(ncn)

 ncn=(⅄nncn)(2)=(nncn)x(nncn)

 ncn=(⅄nncn)(3)=(nncn)x(nncn)x(nncn)

 ncn=(⅄nncn)(10)=(nncn)x(nncn)x(nncn)x(nncn)x(nncn)x(nncn)x(nncn)x(nncn)x(nncn)x(nncn)


ncnA exponential complex function variables of Ancn

if A=∈1/Q)cn and path ⅄ of Q is a variant in the definition of A then 

A=1n2/Qn1)=[(Yn2/Yn1)/(P/P) while Q requires path definition of 1⅄Q or 2⅄Q from P two sets of A complete the formula of Q variable.

A=1n2/1Qn1)=[(Yn3/Yn2)/(Pn2/Pn1)=(1/1)/(3/2)=(1/1.5)=0.^6

and

A=1n2/2Qn1c1)=[(Yn3/Yn2)/(Pn1/Pn2)=(1/1)/(2/3)=(1/0.^6)=1.^6


Applied function of ncn=(⅄nncn)(ncn) with A variables is then 

An1  of 1n2/1Qn1)c1 along path (2)=(1n2/1Qn1))c1(1⅄(φn2/1⅄Qn1)c1)  or [An1  of 1n2/1Qn1)c1 x An1  of 1n2/1Qn1)c1]

and

An1  of 1n2/2Qn1c1)c1 along path (2)=(1n2/2Qn1c1))c1(1⅄(φn2/2⅄Qn1c1)c1) or [An1  of 1n2/2Qn1c1)c1 x An1  of 1n2/2Qn1c1)c1]



(2)An1=

(2)=(1n2/1Qn1))c1(1⅄(φn2/1⅄Qn1)c1)=0.6(2)=0.6x0.6=0.36

and

(2)=(1n2/2Qn1c1))c1(1⅄(φn2/2⅄Qn1c1)c1)=1.6(2)=1.6x1.6=2.56


(2)An1=

[An1  of 1n2/1Qn1)c1 x An1  of 1n2/1Qn1)c1]=0.36

and

[An1  of 1n2/2Qn1c1)c1 x An1  of 1n2/2Qn1c1)c1]=2.56


Any change in cn stem decimal cycle count variable will change the multiple of the exponent squared value in the example and ultimately the final product value also. 


Potential Change of An1  of 1n2/1Qn1)c1 is An1c1=0.6, An1c2=0.66, An1c3=0.666 and so on for An1  of 1n2/1Qn1)

then (2)An1c2 of 1n2/1Qn1)=0.66(2)=(0.66x0.66)=0.4356 

and (2)An1c3 of 1n2/1Qn1)=0.666(2)=(0.666x0.666)=0.443556


Potential Change of An1  of 1n2/2Qn1c1)c1 is based at variable 2Qn1cn as well as An1  of 1n2/2Qn1c1)cn


if 2Qn1cn for An1  of 1⅄ path n2/2Qn1c1) is 2Qn1c2 then A=1n2/2Qn1c2)=[(Yn3/Yn2)/(Pn1/Pn2)=(1/1)/(2/3)=(1/0.^66)=^1.5

and (2)An1c1 of 1n2/2Qn1c2)=1.5(2)=(1.5x1.5)=2.25 while (2)An1c2 of 1n2/2Qn1c2)=1.515(2)=(1.515x1.515)=2.295225

however

A=1n2/2Qn1c1)=[(Yn3/Yn2)/(Pn1/Pn2)=(1/1)/(2/3)=(1/0.^6)=1.^6 and (2)A of 1n2/2Qn1c1)=(1.^6)(2)=(1.6x1.6)=2.56

then (2)An1c2 of 1n2/2Qn1c1)(1.^66)(2)=(1.66x1.66)=2.7556 and (2)An1c3 of 1n2/2Qn1c1)(1.^666)(2)=(1.666x1.666)=2.775556


It is not that these order of operations are incorrect by any means given the path and extent of the defined variables decimal stem cycles have potential change and limit to the variable definition at cn of the variants. 

Although 0.4356 ≠ 0.443556 ≠ 2.25 ≠ 2.295225 ≠ 2.56 ≠ 2.7556 ≠ 2.775556 are not equal.

The values are precise scale variables to the function of ƒ(2)An1cn of ∈[0.4356; 0.443556; 2.25; 2.295225; 2.56; 2.7556; 2.775556 . . .} of altered paths with variants Ancn within the paths sub-units nQncn. These are exponential products from ratios divided by ratios from variables of consecutive bases in y fibonacci and p prime variables. 

Commonly referred to as an algorithm of partial derivative quadratic set variables...


Variable change in cn stem decimal cycle count variables, when applied to numbers greater in exponent will produce astronomical differences in numerical precision based products, quotients, sums, and differences.


With Variables of set A complex variables factor to quotients that are applicable to examples of ncn=(⅄nncn)(ncn)

 ncn=(⅄nncn)(2)=(nncn)x(nncn)

 ncn=(⅄nncn)(3)=(nncn)x(nncn)x(nncn)

 ncn=(⅄nncn)(10)=(nncn)x(nncn)x(nncn)x(nncn)x(nncn)x(nncn)x(nncn)x(nncn)x(nncn)x(nncn) with definitions in 

nᐱ(An/An), ∈nᐱ(An/Bn), ∈nᐱ(An/Dn), ∈nᐱ(An/En), ∈nᐱ(An/Fn), ∈nᐱ(An/Gn), ∈nᐱ(An/Hn), ∈nᐱ(An/In), ∈nᐱ(An/Jn), ∈nᐱ(An/Kn), ∈nᐱ(An/Ln), ∈nᐱ(An/Mn), ∈nᐱ(An/Nn), ∈nᐱ(An/On), ∈nᐱ(An/Pn), ∈nᐱ(An/Qn), ∈nᐱ(An/Rn), ∈nᐱ(An/Sn), ∈nᐱ(An/Tn),∈nᐱ(An/Un),  ∈nᐱ(An/Vn), ∈nᐱ(An/Wn), ∈nᐱ(An/Yn), ∈nᐱ(An/Zn), ∈nᐱ(Ann), ∈nᐱ(Ann),nᐱ(An/Ψn), ∈nᐱ(An/n), ∈nᐱ(An/n), ∈nᐱ(An/∘⧊°n), ∈nᐱ(An/∘∇°n

such that a variable from these sets is applicable to be squared, cubed, factored to the power of 10, and so on with exponential precision based on nncn numbered cycles in ratio decimal stem value. =


Sets A applied to a squared function ncn=(⅄nncn)(2)

nncnᐱ(An/An)(2)=(An/An)x(An/An)

nncnᐱ(An/Bn)(2)=(An/Bn)x(An/Bn)

nncnᐱ(An/Dn)(2)=(An/Dn)x(An/Dn)

nncnᐱ(An/En)(2)=(An/En)x(An/En)

nncnᐱ(An/Fn)(2)=(An/Fn)x(An/Fn)

nncnᐱ(An/Gn)(2)=(An/Gn)x(An/Gn)

nncnᐱ(An/Hn)(2)=(An/Hn)x(An/Hn)

nncnᐱ(An/In)(2)=(An/In)x(An/In)

nncnᐱ(An/Jn)(2)=(An/Jn)x(An/Jn)

nncnᐱ(An/Kn)(2)=(An/Kn)x(An/Kn)

nncnᐱ(An/Ln)(2)=(An/Ln)x(An/Ln)

nncnᐱ(An/Mn)(2)=(An/Mn)x(An/Mn)

nncnᐱ(An/Nn)(2)=(An/Nn)x(An/Nn)

nncnᐱ(An/On)(2)=(An/On)x(An/On)

nncnᐱ(An/Pn)(2)=(An/Pn)x(An/Pn)

nncnᐱ(An/Qn)(2)=(An/Qn)x(An/Qn)

nncnᐱ(An/Rn)(2)=(An/Rn)x(An/Rn)

nncnᐱ(An/Sn)(2)=(An/Sn)x(An/Sn)

nncnᐱ(An/Tn)(2)=(An/Tn)x(An/Tn)

nncnᐱ(An/Un)(2)=(An/Un)x(An/Un)

nncnᐱ(An/Vn)(2)=(An/Vn)x(An/Vn)

nncnᐱ(An/Wn)(2)=(An/Wn)x(An/Wn)

nncnᐱ(An/Yn)(2)=(An/Yn)x(An/Yn)

nncnᐱ(An/Zn)(2)=(An/Zn)x(An/Zn)

nncnᐱ(Ann)(2)=(Ann)x(Ann)

nncnᐱ(Ann)(2)=(Ann)x(Ann)

nncnᐱ(An/Ψn)(2)=(An/Ψn)x(An/Ψn)

nncnᐱ(An/ᐱn)(2)=(An/ᐱn)x(An/ᐱn)

nncnᐱ(An/ᗑn)(2)=(An/ᗑn)x(An/ᗑn)

nncnᐱ(An/∘⧊°n)(2)=(An/∘⧊°n)x(An/∘⧊°n)

nncnᐱ(An/∘∇°n)(2)=(An/∘∇°n)x(An/∘∇°n)

And so on for sets A applied to a squared function ncn=(⅄nncn)(2), ncn=(⅄nncn)(3), ncn=(⅄nncn)(10), to ncn=(⅄nncn)(n)

Variable definition (⅄nncn) decimal stem cycle count is required before any exponential factoring is applied of the variables in exponent path functions.


email@1dir.cc

c.dir.1dir.cc  c.dir.1dir.org  c.dir.1dir.cloud

c://dir